Are up keeping up with CHEM 4?

✓ Aug/Sept calendar on our Website: <u>tinyurl.com/SacStateChem4</u>

✓ Help: Exam #1 is 1 week from Wednesday.

✓ Jeff's office hours: MWF 9 – 9:30 am and 11 - 11:30 am; and by appointment.

 \checkmark PAL office hours: link is on our CHEM 4 website.

✓ Can email me questions: Show question and email picture of work.

✓ Have you put together a study group?

✓ **Homework:** If you occasionally do your homework late, you will get credit for it.

✓ Clickers:

- ✓ Automatic 2 pts for each time you vote (right or wrong).
- ✓ If you're here, but can't vote or visiting from other section, message me in chat.

✓ Optional:

Last week to join *Peer Assisted Learning (PAL)* – MW 12 noon is full.
 Commit to Study (C2S) – Allows you to drop lowest exam.

Welcome to Jeff's CHEM 4 lecture!

We'll be starting in just a bit...

Review clicker question (Covers material from last lecture)

Go to <u>LearningCatalytics.com</u> and login with your MasteringChemistry. Session ID =

- 1) Which of the following formula/name pairs is incorrect?
 - A) K_3N = potassium nitride
 - B) $PbO_2 = lead(IV)$ oxide -
 - C) $Al_2S_3 = aluminum sulfide$
 - D) $Pb_3N_4 = lead(IV)$ nitride

E) AgI = silver(I) iodide

F) CuBr₂ = copper(II) bromide

G) $Ni_3N_2 = nickel(II) nitride$

Pb 0, 1(? charge 2 (-2 charge This 44 becomes the roman numeral in the name

2A 5A 4A 6A 7A 3A N^{3-} Be²⁺ O²⁻ Li⁺ F^- Mg²⁺ $A1^{3+}$ S²⁻ Na⁺ C1⁻⁻ Ga³⁺ Se²⁻ K^+ Ca²⁺ Sc³⁺ Br⁻ Zn²⁺ Sr^{2+} In³⁺ Rb⁺ Te²⁻ I^- Ag⁺ Transition metals form cations with various charges Cs^+ Ba^{2+}

Ag is a type I metal, so it doesn't have roman numerals

CHEM 4 lecture

Monday – September 21, 2020

Sec 5.7 continued...

Naming ionic compounds containing polyatomic ions

Background: Important polyatomic ions

		Monatomic ion	Symbo	ol	
	Γ	bromide ion	Br		Γ
		chloride ion	Cl		
		fluoride ion	F.		
	ļ	iodide ion	ľ		
Note:		nitride ion	N ³⁻		
there is		oxide ion	O ²⁻		
		sulfide ion	S ²⁻		
only one					
cation on		Polyatomic ion		Syr	nbo
our list, NH ₄ +		acetate ion		C ₂ H ₃ O ₂	
		ammonium ion		N	H_4^+
		arsenate ion		As	O43
		borate ion		B	O33-
		bromate ion		Bi	rO ₃ -
		bromite ion		Bi	rO ₂ -
		carbonate ion		C	O3 ²⁻
		chlorate ion		C	O3 ⁻
		chlorite ion		C	O2 ⁻
		chromate ion		Cr	042
		cyanide ion		C	°.N
		dichromate ion		Cr ₂	2O7 ²
		hydroxide ion		C)H-
		hypobromite ion		В	r0 ⁻
		hypochlorite	ion	C	10-

only

catior

Ions made by adding "H*"	Symbol
hydrogen carbonate ion (bicarbonate)	HCO3
hydrogen oxalate ion (bioxalate)	HC ₂ O ₄
hydrogen phosphate ion	HPO42-
dihydrogen phosphate ion	H ₂ PO ₄
hydrogen sulfate ion (bisulfate)	HSO4 ⁻
hydrogen sulfide ion (bisulfide)	HS ⁻
hydrogen sulfite ion (bisulfite)	HSO ₃ ⁻

Polyatomic ion	Symbol
hypoiodite ion	IO ⁻
iodate ion	IO3 ⁻
iodite ion	10 ₂ -
nitrate ion	NO ₃ ⁻
nitrite ion	NO ₂ ⁻
oxalate ion	C ₂ O ₄ ²⁻
perbromate ion	BrO ₄ -
perchlorate ion	ClO4 ⁻
periodate ion	10 ₄ -
permanganate ion	MnO4 ⁻
phosphate ion	PO4 ³⁻
phosphite ion	PO3 ³⁻
sulfate ion	SO₄ ²
sulfite ion	SO32-
thiosulfate ion	S ₂ O ₃ ²⁻

Polyatomic ions are small molecules that are unstable when they have the same number of eand p+. So, they gain or lose ≥ 1 e-.

For example, the NO_3^{-1} ion has one more e- than p+.

As with **monatomic ions** this extra electron had to come from somewhere, like from a Na atom.

Just like we can have NaCl (made from Na⁺ and Cl⁻), we can have NaNO₃ (made from Na⁺ and NO₃⁻).

Background: Naming ionic compounds containing polyatomic ions

Name → Formula

- Can be type I or II metal (use roman numerals as needed).
- Write down the two ions. Combine ions in a ratio that cancels their charges.
- Use () if there is > 1 of a polyatomic ion.

Examples:

Name		lons	Ratio	Formula
manganese(II) dihydrogen phosphate	Mn	H2PO4	1:2	$Mn(H_2PO_4)_2$
lead(IV) sulfate	Pb ⁴⁺	504-	1:2	$Pb(so_4)_2$
lead(II) sulfate	Pb2+	Sdy2-	(:)	P6504
aluminum cyanide	A(³⁺	CN-	[:3	AI (CN)3
ammonium carbonate	NH +	C03 ²⁻	2:1	(NH4)2 CO3

Progress clicker question (covers material we are learning now) Go to LearningCatalytics.com and login with your MasteringChemistry. Session ID =

- What is the formula for cobalt(III) chromate? 2)
 - A) $Co_3(CrO_4)_2$ B) $CoCrO_4$ C) $Co_2(Cr_2O_7)_3$ D) $Co_3(CrO_3)_2$

E)
$$Co(CrO_4)_3$$

F) $Co_3Cr_2O_7$
G) $Co_2(CrO_4)_3$
H) Co_3CrO_4

Background: Naming ionic compounds containing polyatomic ions

Formula \rightarrow Name

- Name each ion. The name of the polyatomic ion does *not* change from our list.
- Use the charge on the polyatomic ion to determine the charge (and roman numeral) for the metal.
- Examples:

Formula	Metal type	Charges	Name
Ni ₂ (Cr ₂ O ₇) ₃	type II	2(² charge) ~ 3(-2) 11 +3	nickel (III) dichromate
$Mg(C_2H_3O_2)_2$	type I		magnesium acetate
Pb(C ₂ O ₄) ₂	type II	$\begin{array}{c} 1(?chorge) \longleftrightarrow 2(-2) \\ 11 \\ 14 \end{array}$	lead (1) oxalate
Sn ₃ (PO ₄) ₂	type II	$3(?charge) \longrightarrow 2(-3)$	tin(II) phosphate
$Ca(IO_2)_2$	type I		calcium iodite

Progress clicker question (covers material we are learning now)

Go to <u>LearningCatalytics.com</u> and login with your MasteringChemistry. Session ID =

- 3) What is the name of $CuBO_3$?
 - A) copper(I) perborate
 - B) copper borite
 - C) copper(I) bromate
 - D) copper(I) borate

Progress clicker question (covers material we are learning now) Go to LearningCatalytics.com and login with your MasteringChemistry. Session ID =

- 4) Which of the following statements related to naming ionic compounds is false?
 - A) Fe²⁺ and Cu⁺ are Type II metals.
 - B) The cation is always named first and the anion second.
 - C) Zn²⁺ and Ag⁺ are Type I metals.
 - D) Ionic compounds have an overall neutral charge.
 - E) All ionic compounds contain a metal.
 - F) K_2CrO_4 is a Type I ionic compound.

Remember our exception: NH₄⁺

Progress clicker question (covers material we are learning now) Go to LearningCatalytics.com and login with your MasteringChemistry. Session ID =

5)	Which of these formula/name pairs is correct?	Possible correction:		
	A) $(NH_{4})_{3}_{2}O_{4} = ammonium oxalate$	(NH ₄) ₂ C ₂ O ₄		
	B) KMnO ₄ = potassium() permanganate	potassium permanganate		
	C) $Pb(S_2O_3)_2 = lead(II)$ thiosulfate $Pb S_2O_3$	lead(IV) thiosulfate		
	D) AgCN = silver eyanate	silver cyanide		
	E) Ni(HSO ₄) ₂ = nickel(II) hydrogen sulfate	correct		
	F) CuClO ₃ = copper(I) chlorite CuClO ₂	copper(I) chlorate		